New Results on Abstract Voronoi Diagrams
نویسنده
چکیده
Voronoi diagrams are a fundamental structure used in many areas of science. For a given set of objects, called sites, the Voronoi diagram separates the plane into regions, such that points belonging to the same region have got the same nearest site. This definition clearly depends on the type of given objects, they may be points, line segments, polygons, etc. and the distance measure used. To free oneself from these geometric notions, Klein introduced abstract Voronoi diagrams as a general construct covering many concrete Voronoi diagrams. Abstract Voronoi diagrams are based on a system of bisecting curves, one for each pair of abstract sites, separating the plane into two dominance regions, belonging to one site each. The intersection of all dominance regions belonging to one site p defines its Voronoi region. The system of bisecting curves is required to fulfill only some simple combinatorial properties, like Voronoi regions to be connected, the union of their closures cover the whole plane, and the bisecting curves are unbounded. These assumptions are enough to show that an abstract Voronoi diagram of n sites is a planar graph of complexity O(n) and can be computed in expected time O(n log n) by a randomized incremental construction. In this thesis we widen the notion of abstract Voronoi diagrams in several senses. One step is to allow disconnected Voronoi regions. We assume that in a diagram of a subset of three sites each Voronoi region may consist of at most s connected components, for a constant s, and show that the diagram can be constructed in expected time O ( sn ∑n j=3 mj j ) , where mj is the expected number of connected components of a Voronoi region over all diagrams of a subset of j sites. The case that all Voronoi regions are connected is a subcase, where this algorithm performs in optimal O(n log n) time, because here s = mj = 1. The next step is to additionally allow bisecting curves to be closed. We present an algorithm constructing such diagrams which runs in expected time O ( sn log(max{s, n}) ∑nj=2 mj j ). This algorithm is slower by a log n-factor compared to the one for disconnected regions and unbounded bisectors. The extra time is necessary to be able to handle special phenomenons like islands, where a Voronoi region is completely surrounded by another region, something that can occur only when bisectors are closed. However, this algorithm solves many open problems and improves the running time of some existing algorithms, for example for the farthest Voronoi diagram of n simple polygons of constant complexity. Another challenge was to study higher order abstract Voronoi diagrams. In the concrete sense of an order-k Voronoi diagram points are collected in the same Voronoi region, if they have the same k nearest sites. By suitably intersecting the dominance regions this can be defined also for abstract Voronoi diagrams. The question arising is about the complexity of an order-k Voronoi diagram. There are ( n k ) subsets of size k but fortunately many of them have an empty order-k region. For point sites it has already been shown that there can be at most O(k(n − k)) many regions and even though order-k regions may be disconnected when considering line segments, still the complexity of the order-k diagram remainsO(k(n−k)). The proofs used to show this strongly depended on the geometry of the sites and the distance measure, and were thus not applicable for our abstract higher order Voronoi diagrams. Nevertheless, we were able to
منابع مشابه
Randomized construction diagrams * incremental of abstract Voronoi Rolf
Abstract Voronoi diagrams were introduced by R. Klein (1988) as an axiomatic basis of Voronoi diagrams. We show how to construct abstract Voronoi diagrams in time O(n log n) by a randomized algorithm, which is based on Clarkson and Shor’s randomized incremental construction technique (1989). The new algorithm has the following advantages over previous algorithms: l It can handle a much wider cl...
متن کاملAbstract Voronoi diagrams revisited
Voronoi Diagrams Revisited Rolf Klein∗ Elmar Langetepe∗ Zahra Nilforoushan† Abstract Abstract Voronoi diagrams [21] were designed as a unifying concept that should include as many concrete types of diagrams as possible. To ensure that abstract Voronoi diagrams, built from given sets of bisecting curves, are finite graphs, it was required that any two bisecting curves intersect only finitely oft...
متن کاملRandomized Incremental Construction of Abstract Voronoi Diagrams
Abstract Voronoi diagrams were introduced by R . Klein [Kle89b, Kle88a, Kle88b] as an axiomatic basis ofVoronoi diagrams. We show how to construct abstract Voronoi diagrams in time O(nlogn) by a randomized algorithm, which is based on Clarkson and Shor's randomized incremental construction technique [CS89]. The new algorithm has the following advantages over previous algorithms: • It can handle...
متن کاملSimplified Abstract Voronoi Diagrams
We present a simplified system of axioms for Abstract Voronoi Diagrams that should pave the way for new applications in theory and practice.
متن کاملVoronoi Diagrams in Linear Time ∗
Voronoi diagrams are a well-studied data structure of proximity information, and although most cases require Ω(n log n) construction time, it is interesting and useful to develop linear-time algorithms for certain Voronoi diagrams. We develop a linear-time algorithm for abstract Voronoi diagrams in a domain where each site has a unique face and no pair of bisectors intersect outside the domain....
متن کامل